Sensor Network Infrastructure for Ocean Observatories

Bruce M. Howe

Department of Ocean and Resources Engineering School of Ocean and Earth Science and Technology University of Hawai'i at Manoa

Marine Technology Society 1 April 2009 Honolulu, Hawaii

Outline

- Overview
- Mobile platforms acoustic Seaglider
- Mooring sensor network
- Fixed nodes
- Acoustics
- Concluding remarks

Background

- Many "ocean observatories" being installed or under development
 - e.g., VENUS, NEPTUNE Canada, NSF OOI Regional scale observatory (aka NEPTUNE), ALOHA, and global and coastal scale components
- Over the long term
 - The reliable backbone will be transparent (we hope!)
 - The sensor network infrastructure will be "closest" to the user/scientist, and will be the largest cost over the lifetime
- Sensor network infrastructure needs development

Goals: Ocean Observatories Example:

- Power, timing, navigation, comms: f(x,t)
- Fixed cabled nodes with high power and bandwidth
- Mobile/fixed hybrids profiler, ROVs, docking, etc
- Mobile autonomous
- Fixed autonomous
- Role of acoustics

Acoustic Seaglider

- 1/2 knot at 1/2 W
- Up to 1000 m dives
- > 6 months, 3000 km, 600 dives
- Temperature, salinity and others
- Now with hydrophone and acoustic modem

Acoustic Seaglider Operations – Summer 2006

NPAL / ATOC Kauai source

• 260 W

- M-sequence coded signals
- 75 Hz, 35 Hz bandwidth
- 28 ms peak
- 27.28 s period
- 2 hour transmissions, per day

ALOHA-MARS Mooring (AMM)

- Moorings called for in many NSF OOI plans
- Features
 - Enables adaptive sampling
 - Distributes power and communications capability throughout the water column
 - ROV servicing
- Major Components
 - Subsurface float at ~165 m depth with sensor suite and junction box
 - Profiler with sensor suite that can "dock" for battery charging, continuous two-way communications via inductive modem
 - Electro-optical-mechanical mooring cable
 - Seafloor sensor suite and junction box
- Deployments
 - 2007 2008 on Seahurst Observatory in Puget Sound, 30 m depth
 - Proposed 2010 2011 MARS Monterey
 - Planning 2012 ALOHA Cabled Observatory

NSF funded – OTIC - Lukas and Boss co-PIs

Profiler with inductive power docking station

- Concentrated on Inductive power coupler
 - S&K Engineering
 - Efficiency ~70%
 - 200 W transfer
 - 50 kHz
- Tested on the APL barge in June 2006

Subsurface Float assembly

Deploying AMM

Deploying AMM

MMP profile data T,S and u

29

12/14/07

• T and S vs depth

12/13/07

• U, v, w, vs depth

AMM Modem and hydrophone

Simrad EK-60 fish sonar

- John Horne, UW
- Now on MARS

AMM mooring: Next deployments

MARS Location - 920 m water depth – Proposed - deploy summer 2010 ALOHA Cabled Observatory - 100 km N of Oahu -4750 m -2012?

ALOHA Cabled Observatory

- Fred Duennebier (PI), Roger Lukas, David Karl
- 100 km north of Oahu 4750 m water depth
- hydrophone+pressure data, 3/2007-10/2008
- October 2008 failed attempt to install node – connector problems
- Proposing again, hope to deploy July 2010

Acoustics

- Extend the spatial footprint of a fixed sensor system
- Add modems, fixed and mobile
- Integrated precise time, navigation, communications
- Work on network protocols
- AND Science
 - Geodesy,
 - Ultimately tomography:
 - short range tomography around node
 - Long range source / receiver
 - Ambient sound

Long-range Tomography + navigation, fixed and mobile

- Broadband precision, Improve 1-2 s to 1-10 ms
- Webb sweeper, <200-300 Hz, efficient
- Acoustic mooring at ALOHA
- DART buoys, TPC-5 cable

10708

• Mobile receivers – floats, gliders. AUVs – multi-purpose

135°W

Concluding Remarks

- Acoustics on Seagliders demonstrated:
 - Communications and navigation gateway data mule, timing
 - Acoustic receiver marine mammals, tomography
- Mooring distributing power and comms vertically
 - Demonstrated in Puget Sound, proposed Monterey Bay
 - Autonomous version with buoyancy driven profiler (Alford et al.)
 - Include acoustic transceiver, cabled and autonomous
- Fixed cabled nodes coming on-line
 - ALOHA, Kilo Nalu, OOI/RSN/VENUS/Canada, TPC-5, ...
- Integrating acoustics + navigation into data assimilation mobile + fixed acoustic tomography sources/receivers

More remarks

- The moorings, gliders, and acoustics are just some of many possible ways to extend the spatial sampling in ocean observatories
- Fixed, hybrid, mobile and direct, remote, autonomous control all have roles
- Improving reliability at this cutting edge and reducing cost are crucial to success
- More than enough problems!

Chris Siani, APL engineer

Thanks to many!

Questions?

THE STORE

Sponsors:

- •NSF National Science Foundation
- •ONR Office of Naval Research
- •NASA National Aeronautics and Space Administration